The Stefan problem and concavity
نویسندگان
چکیده
We construct examples for the one-phase Stefan problem which show that $$\alpha $$ -concavity of solution is in general not preserved time, $$0 \le \alpha <1/2$$ . In particular, this shows that, contrast to case heat equation a fixed convex domain, log concavity solutions problem.
منابع مشابه
Solving The Stefan Problem with Kinetics
We introduce and discuss the Homotopy perturbation method, the Adomian decomposition method and the variational iteration method for solving the stefan problem with kinetics. Then, we give an example of the stefan problem with kinetics and solve it by these methods.
متن کاملNonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملTHE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملInternal Dla and the Stefan Problem 1529
Generalized internal diffusion limited aggregation is a stochastic growth model on the lattice in which a finite number of sites act as Poisson sources of particles which then perform symmetric random walks with an attractive zero-range interaction until they reach the first site which has been visited by fewer than α particles, at which point they stop. Sites on which particles are frozen cons...
متن کاملA Stochastic Stefan Problem
We consider a stochastic perturbation of the Stefan problem. The noise is Brownian in time and smoothly correlated in space. We prove existence and uniqueness and characterize the domain of existence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2021
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-021-02061-y